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DIRECT NUMERICAL SOLUTION OF LARGE SETS

01 SIMULTANEOUS EQUATIONS

R.A. KAXEL AND M.W. MC CABE
Aerospace and Mechanical Engineering Department

L University of Ar izona, Tucson, AZ 85721, U.S.A.

Abstract —— The pap er atte mpts to survey , classify and compare methods

• availab: r the solution of simultaneous equations on a digital

computer. It is known that , for direct methods, the amount of central

processor t ime required to perform the solution varies little from one

method to the other . More interesting than the algorithm is the data

handling method. The basis for comparison here is core utilization and

the number of required I/O operations. Low core utilization, means

higher program capacity and , increased generality, whereas a low I/O

activity improves efficiency and reduces system residence time . One of

the interesting findings in a comparative study of the demands on computer

resources is that the data handling method is indeed the deciding factor ,

rather than the mathematical algorithm.

In order to avoid too mathematical an approach , the paper recogn izes

the origin of the equations in the mathematical modelling of physical

problems. A classification of such problems is attempted and its

implications with regard to the solution. procedures are assessed whenever

possible. A number of parameters are suggested for use in program per-

formance measurements.
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I • EVALUATION OF SOLUTION METRODS

Numerical solutions of simultaneous equations may be performed with

either direct or iterative methods.t11 In some cases , hybrid methods ,

L combining an element of both, may be employed)2’~~ Iterative methods

have the advantages of a low storage requirement and possible fast con-

vergence in certain cases, but their rate of convergence is unpredict—

able. The paper concerns itself, therefore, primarily with direct methods.

Many misleading statements and conclusions can be found in the cur—

rent literature due to a lack of distinction between a basic mathematical

technique and its Implementation on an electronic digital computer. Just

as an excellent mathematician may have his “tricks of the trade,” so does

a good professional progra e r  have access to special knowledge result—

ing in efficient implementation of a basic mathematical algorithm. The

performance of a particular implementation is influenced not only by

the excellence of the progr~~~er, but by the available system software

and hardware at a particular installation. The presence of a large core,

direct access (or index sequential ) files, high speed backing storage ,

efficient FORTRAN compiler and file management system, etc., has a great

impact on the capacity and performance of a program and will undoubtedly

influence the choice of the algorithm. In. view of this, a classification

of data handling techniques and an evaluation of their demands on computer

resources are attempted. In comparing these algorithms, criterion are

selected that are system independent, as much as possible . The findings

are then applied to two particular installations.

I
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II. DIRECT METHODS OP SOLUTION

It is customary to refer to a solution method (mathematical algorithm)

by the name of an originator to whom the method is comeon].y attributed

(Gauss, Choleeky, Crout , etc.). Instead of this, two main solution

• strategies are defined , the triangu larization methods (e.g. ,  Gaussian

elimination) and factorization methods (e.g., Crout, Cholesky, Inverse

decomposition [4]
)~ Although it can be shown that the factorization and

• triangularization methods are closely related in a mathematical sense~~’
5’6~,

the computational step s and sequence of data retrieval, in a computer

program, are distinttly different and therefore play an important part in

any comparison. It can be shown that the greatest difference relates to

the I/O operations rather than the arithmetic effort required.

• 11.1 Trj anqularization Method (Gaussian Elimination)

Consider the equation

(1)

where K is a square non—singular coefficient matrix, R is a right—

hand side and r is an unknown vector(s) . A series of row transfor mat ions

are performed , resulting in an upper triangular coefficient matrix . The

process may be represented mathematically as

~~ Q.!) (2)

where L is a lower triangular matrix.

Once this form is achieved, the solution proceeds through a simple

back—substitution operation . It is also possible to per form the t n —

angulanization in reverse order , using an upper triangular matrix,

( K )  r —  (U R) (2a)
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followed by a forward substitution.

11.2 Factorizatioz2 Method (Crout, Cholesky, Inverse decomposition)

In this method , the coefficient matrix i~ factorized (decomposed)

into a number of matrices. The most general case is given by J
• (3)

~~ where L is a lover triangular matrix with unit diagonal elements , U is

an upper triangular matrix with unit diagonal elements and d is a diagonal

matrix . It is also possible to reverse the scheme by expressing the co—

• efficient matrix as

(3a)

Whether equations (3) or (3a) are utilized, the program proceeds to

compute L, d and U and store them. Using equation (3), equation (1) now

takes the form

• ~~~~~~~~~ (4)

The solution to equation (4) is given by:

• — U d ~~L~~R (5)

It is not necessary, or advisable , to form the inverse of any of these

matrices explicitly since matrix eparsity is thereby destroyed. One J
proceeds to evaluate the following vectors directly , and in this order ,

(3*)

• !2 — (5b)
and finally —1

£3 U ,~~~~
. (Sc)

In the Crout metho d , the matrix ~ is .ultipli.d by d to form

-4- ii
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• such that
(6)

• •• Special cases anise. In the case of struc tural prob lems , for

example, K is a symeseric positive definite matrix. En this case ,

(7)

And it is only necessary to comput e and store one of the matrices L

and U.

In the Cholesky decomposition , the square root of the diagonal

• matrix d is obtaine d and mult iplied by L so that

(8)
• - where 

* ~L — d ~L (8*)

In both the Crou t and Cholesky method s en attempt is made to

eliminate the matrix d from the formulation . In both cases the variat ion

on the basic facto nization scheme is minor and causes addit ional problems .

Neither method results in an appreciable saving of storage space or

seriously affects the computing effort. Therefore , the original for—

inulation of equations (4) and (5) vii. be used for non—syimnetr ic matrices.

In additon , equation (7) will be used for sy etr ’ic matrices .

11.3 General Remarks About Direct Methods

For both basic solution procedures , the triangu lanization and

factonization (decomposition), one can safely state the following:

a. It is possible to solve for several right—hand sides simultaneously.

b. No additional storage is required for the L , U and d matrices.
They can occupy the same storage which K occupied originally.

c. 3y saving the triangular matrices (L!), d, L , and/or U , it is
possible to solve for new sets of right —hand sides without

—5—
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I

further tniazigulani.zation or factori zat...~~ .

d. Both methods may be combined with any of the data storage
schemes , to be described under IV. In particular , both methods ,
end their derivatives, can be generalized to the hyper—ro w or
hyper-matrix sch~~es.

a. Both methods require the same computational effort.  See, for
example, the operation count in ref. (4].

It is , therefore , natural to conclude that the relative superiority
L

of one scheme over the other can only be determined , if at all , on the

basis of their deman d on computer resources — mainly core space and I/O

operations . The choice becomes, the re fore , one of the data handl ing

strategy .

III. ITERATIVE METHODS

Iterative methods are potentially useful in the solution of large

systems of equations . Althoug h few programs utilize such methods , it

may be unwise to dismiss iterative methods altogether . Such methods

still hold certain advantage s, such as low storag e requirements , which

may be important in con~j unction with large three dimensional solids

proble ms, where storag e is of prime importance — particularly if the

current trend of increasingly faster central processors , coupled with a

relatively staguant back ing storage technology, continues. Although the

paper is primarily concerne d with direct methods , we list the following

iterative approaches which are most prominen t today :

a. Gauss—Seidel Method

b. Block Relaxation Methods (2 ,3]

c. Con~ugats Gradien t Method (7 , 8]

d. Dynamic Relaxation Msthod (9 ]

-6-
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IV. DATA HANDLING METHODS

• Core storage is usually not sufficient to hold both the co—

efficient matrix and the right—hand side. Special data handling

technique. are utilized with two objectives in mind: low core

• requirement and few I/O operations. The main schemes are described

under this section. They are labelled using I for in core, R for

row , G for group or partition, S for submatnix . Except for IB, a two

letter designation stands for the disk storage unit (recotd) , and the

computational imit (pivot) , respectively , as described below.

IV.]. In-Core Banded Storaqe (IBI

Only useful in small size problems . In non—linear problems , where

problem size is often kept down out of necessity , and where one attempts

to avoid the use of mass storage devices, the scheme is still heavily

used.

IV.2 Banded Out-of -Core Stora qe,~ Rows (or Columns) Stored Indi viduall~j  (AR)

This scheme requires only enough core storage to accounnodate two

individual rows of the matni~ simultaneously. The solution is accomplished

via single row combinations. It has the disadvantage of excessive I/O

activity.

-- IV. 3 Banded Out-of -Core Stora ge, by Row (or Column) Partitions (GR ,GG)

In which the banded matrix is store d in row, or col~~~, partitions .

Each partition contains a number of rows , or columns, and is read , or

written , with one I/O instruction . Thi. method of operation may be

combined with row by row , or partition by partition , solution algonithms .~~
0]

-7-
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IV.4 Sparse Representation 1ll,~ 2]

In this method , the sparsity of the matrix is taken into account

on an element , or element str ing, basis . Each element , or element string,

is accompanied by a header describing its size and position within the

matrix. An effort is made so that only “active” strings are present in

core at any stage of the computation. It is difficult to evalute such an

appr Oach , due to its problem dependency. We feel, however, that the

method can essentially be described in terms of one of the other schemes,

with variable band -width. The problems chosen as a basis for comparison

in this paper do not reflect this property , and we can therefore exclude

sparse representa tioá from our comparison.

IV.5 Hyp.rmatrix Method (SG) (13 ,14,15,16 ,17]

The coefficient matrix, as well, as the right—hand side , are par—

titio ned into compatib le blocks cailed submatrices. Each sub-matrix is

treated as a record to be moved in or out of core with a single I/O

operation. The individual submatrices are not stored, or operated upon ,

if zero. Therefore, a number of pointers are utilized to indicate the

existence, or non—existence, of the submatrices , and their disk addresses.

Theee pointers may be, in themselves, regarded as a matrix. For large -
~~

problem., this matrix again presents a problem and must be handled using

one of the schemes described under this section . It is possible to treat

it as a banded matrix , a sparsely populated matri x~~2 P 14] 
or as a hyper—

(15] -

matrix

-8- d
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IV.6 Miscellaneous Methods

The above cases have been chosen as well—defined examples of data

handling methods . Instances may exist where programs use variations on

the above methods that make them perhaps more efficient in certain

situations, but also difficult to classify. As an example, the Way ..

Front hI echnique~~’81 utilizes the sparse method of representation coupled

with a sophisticated disk handling scheme. The method combines a banded

approach with a form of band—width optimization performed simultaneously

with the coefficient matrix assembly.

Buffering may somet imes be useful , where an I/O buffer is created ,

which contains a number of records (row, columns or hypermatrices). If

an I/O operation is initiated, the buffer directory is first consulted

before an I/O access is attemptea. Exchanges between the buffer and the

disk are governed by a suitable paging algorithm. This technique increases

the I/O overhead but may be of great benefit, particularly if an additional

amount of fast secondary core (e.g. Extended Core) is available. A

similar situation arises with some mini—computers in which a FORTRAN pro-

gram may only access a limited amount of core during computation , but

may use addresses beyond its area for block data transfers.

V. CLASSIFICATION OF M&TH~ (A~TICAL MODELS

The type of mathematical model employed has a direct impact on the

correct choice of solution algorithm. Ideally, general purpose programs

• should employ the most efficient all round algorithm possible. Many

special purpose programs , however , employ the simplest possible algorithm

to solve the class of problems they are designed for. We believe ,

therefore, that the classification attempted here is of value both to

—9—
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J
special program designers , and as a measure of performance of algorithms

employed in large genera]. purpose programs . ~‘or the purpose of our study ,

we choose some typical grids employed in a discrete mathematical model, j
as typified by finite element and finite difference approaches . Figure 1

shove sketches of the four models chosen . In each case, the number of 
-

•

grid nodes in any one direction is given by N, and the number of degrees

of freedom by f. In a heat transfer problem, for example, f — 1. It is

equal to 3 in elastic solids problems and 6 in shell problems. The four

models chosen are: J
V.] .  One-Dimensional Grids (E152J

This is the simplest case, admittedly trivial , utilized in the - -
~

• 
- 

solution of a one—dimensional problem. Models of this nature are best

handled in core using a banded storage scheme.

V.2 Two—Dimensional Gri ds (E2S2)

The demands on computer resources are moderate. A banded approach

is effective. In—core handling is possible for small problems . Out— of—

core banded schemes (GR,GG) , such as in the SAP program~ ’°~ perform well ii

in this situation.

V.) Two-Dimensional Grids in Three-D~~~nsional Space (E2S3)

Such models are typical of shell structures , and are of great - .

practical. importance . The chosen example grid is sufficiently repre—

sentative. In practice, such grids may be of a highly complex nature.

The demands on computer resources are greatly increased and, as Will

be shown later , more sophisticated schemes such as those employed in large

scale programs [11, 13, ~,4 , 1.5, 16, 17] are imperative. The complexity

of node interaction dictates a sophisticated method for the handling of

—10—
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Element of Length
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E2S2 Grid
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N

Element of Area

E2S3 Grid • •

-- 
2

Surface Element I

3
• 2

1 2 3
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I~~~~~~~~~3 
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Figure 1. Classification of Zk,del Grids
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matrix sparsity.

V.4 - Solid Continuum Problem (13S3)

This is the moat demanding of all models . The sheer amount of

storage and computation required places most crucial demands on computing J
systems. Not only are advanced data handling methods required , but also

new methods and techniques should be constantly investigated. Iterative J
solution methods17’81 and hybrid approaches (21 are possib le candidates.

* 
VI. PROBL~ 4 SIZE LIMITATION DUE TO AVAILABLE SPACE

In order to evaluate the effect of computer resources on program

capacity, storag e space is first considered. Table 1 shows the limitations J
for a number of model types and different numbers of degrees of freedom —

if the solut ion is conducted in core , with 40 ,000 words available core —

storage . Both sparse representation , used in conjunction with an iterative

solution method requiring no facto rization of decomposition , and direct

methods are considered. No account is taken of the storage overhead

necessa ry to organize the data.

It is assumed that the total storage ruquirement remains pr actically

the same regardless of the data handlin g method used.

Table 2 presents similar figure s for an out—of—c ore solution , assum—

ing one miflion words of disk space are reserved for the stiffness matrix.

In both cases , the high demand on computer storage is evident —

particularly In the case of the E2S3 models. One may notice , for

example , that with an expansion of storage allocation from 40 ,000 to

l,000,00Q words, the maximum E3S3 grid size, for a heat trans fer problem ,

increa ses only from a (7x7x7) to a (14x14x14) ; i.e. doub le the grid re—

solution for a 25 fold increase in storage apa ce .

— 12— :i
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The following is a key to the information contained in Tables I

and 2:

d — (subscript) ref ers to direct method ,

i — (subscript ) refers to it er at ive method ,

— number of nodes per dimension (grid density) ,

f number of degrees of freedom/ node ,

Ud, TJi number of unknowns,

b — maximum half—band—width,

Sd,Si 
— storage requirement for dir ect and iterative solutions,

Nd,Nj — program capacity for direct and iterative solution s, in
-- 

- terms of grid density resolution, and

a — matrix sparsity factor (see below) .

VII. GENERALIZATION OP THE BAND—WIDTH CO~1CEPT

The concept of the “band—width”, B, and half —band—width, b , have

been extremely useful in program design. In section VI , the concept was

used as a basis for evaluating the relationship between storage space

— available and maximum problem size for a chosen set of highly regular

grids , representative of typical classes of physical problems . Schemes

based on sparse representation, however, such as described under P1 .4
I

or the block—orient ed hypermatrix scheme described under P1.5, do not

operate on this principle. Such schemes take into consideration only those

- elements different from zero , in both storage and computation. It is

necessary to define , in more precise terms , a new Set of parameters to

describ e the spar sity of an arbitrary matrix. It is hoped that these

new parameters will play a role in measur ing -the performance of solution

schemes, as well as in the prediction of solution times , and node and

—13—
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I.
element renumbering , for the purpose of solut ion cost minimizati on.

VII .1 Active Local Bandwidth

This is defined as the total number of non—zero element , in a

particular row or column. It is necessary to distingu ish between the

active local bandwidth before and after decomposition (or factor ization) .

The former , which is emaller , is Important in itera tive schemes , while

the latter determines the computational effort in a dire ct scheme . Sym—
F ’ 

- 
- metric coefficient matr ices will now be considered , although a gener al—

ization to non—symmetric matrices is straight forward . We Introduce the

following symbols:

B Initial active local bandwidth for row (or colt~ n) i.oi

b
Initial active local half bandwidth for row i b
is a count of the non—zero entr ies horizontally °i
to the right, starting with the diagonal elements.

c Initial active local half bandwidth for column. i. c
- 

0i is measured vertically up, starting with the °i
diagonal .

Active local bandwidth for row (column) i. It is equ ivalent
to B for the coefficient matrix after factori zatj on or

decomposit ion .

bi & Active local half bandw idths for row and column i, re-
spectively, after element propa gation due to a dire ct
solution .

‘4
.

The reader should notice that

~~ 
— b 0 +c — 1  (9)

i i i

and Bi — bi + c~ — 1 (9a)
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• VI I 2  Ma trix Prof ile

This is defined as an array containing all local bandwidth values .

It describes the matr ix sparsity in a more accurate fashion than the

usual (max imum) bandwidth concept .

B — { B  B . . . . ..B . . . . . . B } (1O)
—O 01 02 °i °U

is the initial matrix profile , and 

•
~~~~

1 (11)

is the (final) matrix profile, after element propagation .

Similarly for Initial row and column (half ) bandwidth profiles we

have

• b — {b b . . . b . . . b } (12)••••O 01 02 oi °u

and C {c C . . .C  . . . c  1 (13)• —a o o o o

and for f inal profiles we define

’ 2 i U

b — {b
1 b2 • • . b~ • b~~} (14)

and c {c1 c2 . . . c~ . . . c~, }  (15)

VII .3 Generalized Matrix Parameters

The following parameters are introduced. They represent useful
‘ I,

scalar measures of sparse matrix properties utilized to measure space

and computational requirements. Again only symmetric mat rices are con-

sidered , although the generalization to non—symmetric matrices is straight-

forward.

VI I .3. 1 Mean Bandwidth

The mean bandwidth of a matrix is defined as:

-‘7-
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— U
b • (Z b~)/ U .

i — i  (16)

This parameter is utilized primarily to measur e storage rsq uirsmem ts .

VII.3.2 Matrix SparsitM Factor

a — 2~/ (U+1) 2b/U (17)

a varies from for a diagonal matrix to 1 for a fully populated

matrix .

VII .3.. 3 Computational Bandwidth

The number of float ing point multiplicat ions and addition s involved

in the tri angular izatio n of a matrix is approx imately equal to b2U/2 , for - 1.

a matrix with a constant local bandwidth. This leads to a bandwidth

parameter , called the computational half bandwidth, which may be used for

r solution time estimateø.

b — (E b~/U]½ (18)

— VIII • MEASUREMENT OF PROGRAM PERFORMANCE

Solution routines , based on a basic mathematical algoritha , are

difficult to compare. The following performance measurement parameters

are suggested to help comparison and evaluations.

VIII.1 Storaae Eff i ciencu Parame ters (I)

— The minimum storage required for a coefficient matrix is given by:

S in
~~~~~

U. (19)

However , due to program organization , additional space may be

needed to structur e th. data. If the total amount of space required to

store and manage the coefficient matrix is given by 5, th. storage ‘j

—18—
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efficiency of the program is defined by:

B 
Smin

S S

VIII .2 Comp uta tional Efficiency (E)

The total amount of oper ations needed by the Gaus sian elimination is

approximately equal to

U
— I C + 2B1p) (20)

i — I

where p is the number of right —hand sides . However , considerable over—

head is usually associated with data management. One way to measure

efficiency is to compare the central processor time , T , taken by the

program to solve the equations with the approximate time for the Gaussian

elimination Tc, defined as

(21)

where tM and tA 
are the CP times required to perform a floating point

multiplication and an addition, respectively, on the given computer. The

program computation efficiency, B , is defined as

T (22)

IX • COMPUTER RESOURCE REQUIREMENTS

A solution scheme has certain demands on the computer . In measuring
I- -

the total burden on the system one has to consider the utilization of all

• its resources . In detail they are:

a. Central processor t ime to perform the necessary computatio ns.
4.~~- Overhead is also pres ent due to data manag ement function s that

the program has to perform.

b. Core space required to store prog ram and data . In an out—of —core

f l
— 19—
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solution , a part of this space is used as a dynamic working
space contain ing, at any one t ime , only a fraction of the data
required for the solution of the problem. Core space is an
important and limited resourc e . This fact is reflected in moat
charge algorithms , which use the amount of core utilized by
a program as weighting factor in assessing system charges .

c. Input/Output (I/O) time . Ignori ng hard to measure factors such
as system I/O buffering and virtual memory machine operation ,
each explicit request by the program to the system to either
read or write a block of data from an I/O device , typica lly a
disk, constitutes a demand on system resources. The system I/O
charges are based on both the initial disk access Ce.) and the
amount of data transferred. Both elements will, be used as
criterion in evaluating the I/O requirements of a particular
algorithm. It is interesting to note that in large computer aye—
tems I/O operations require extensive amounts of associated CP.

d. Disk Space Requirements. Finally, a certain amount of disk
space is required to store primary problem data as well as
organizational data used to manage it. Disk require-
ments may or may not be a factor in assessing -computer run
charges . If the data is retained on disk permanent files after
job completion , disk storage is cha rged .

IX. 1 Comp ariiw Resource Requirements for Diff eren t SolutIon Schemes

In order to determine the suitability of the various schemes for

the solution of typical model types , we have to assess the total effect

due to all four factors listed above . Studieø by the autho rs and others

(see for example [9]), show that central processor t ime utilized in the

basic solution steps is more or less invariable —— re gardless of the

mathematical tool and data handl ing scheme used. It can be also shown

that disk space requirement is practically constant . It follows that the J
two most important factors are those of core storage and the I/O time .

The purpose of this section is to study the amount of both resources

and their dependence on the model type and the data handling scheme. Only j
the fundamental data schemes will be considered. The followin g gives a

brief description of each method. Each scheme, except for 13, is designated

by a two lette r code . The first denotes the storage unit which may be a

—20—
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row (R) , a group of rows (C) or a sub-matr ix (S) . The second denotes

the solution (pivoting) unit . The method may solve row by row or group

by group.

a. In—core banded solution (IB) . -

b. Out— äf—core banded solution (RR) , based on active bands . Each
single row is stored as an independent record and may be read

• or written with a single I/O instruction. Pivoting is by rows .

e. Out—of —core banded solution . Rows stored in blocks . Solution
• proceeds row by row (CR) . For a particular problem, the more

rows there are in a group , the more core is needed and the less
the number of I/O operations . In balancing the two factors ,
program performance may be optimized as shown in section VIII .

d. Out—o f—core banded solution. Rows stored in blocks . Pivoting
is by groups (CC) . This method is the most economical in I/O

• operations (see Table 3), but requires excessive core storage
for large problems.

e. Out-of—core hypermatrix solut ion (SG) in which the grouping of
unknowns is done on both rows and columns in a compatible manner .
The coefficient matrix is divided into sub-matrices. Each sub—
matrix is read into core or written on disk with one I/O
instruction . This method is the most economical in core storage
utilization for large problems .

The core storage requirement for the hypermatrix is that sufficient

to hold four or five sub—matrices , as well as pointers to a number of

related sub—matrices. In the simplest possible of schemes the full

• pointer matrix is stored in core. This approach, however, severely.limits

problem size. In order to reduce the amount of pointer storage, any of

the approaches applied to the coefficient matrix itself may again be

utilized . In particular, the following possibilities exist:

(i) Pointer matrix stored in core , as a full matrix (SC—IF ) .

(ii) Pointer matrix stored in core, as a banded (sparse) matrix (SG—IB) .

(iii) Pointer matrix stored out of core , as a banded matrix, only the
relevant rows are held in core (SC—OB) . We will only consider
the case where each record stores the addresses to a row of sub—
matrices, in a sparse format . All active address rows are pre—

—21—
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sent in core.
L

(iv) Pointer matrix stored out of core , as a hypermatrix (SC—H) .

The SG-OB method for storage of pointer matrix rows will be considered

in assessing core storage. It will be assumed that the addit ional I/O

operations to handle pointers have a negligible effect. It is also assumed

that, for the hypermatrix scheme, the right —hand side will be stored in—

dependentl y of the coefficient matrix , in compatible blocks . It is possible ,

therefore, to solve for many right—hand sides simultaneously. If the

number of right—hand sides exceeds the number of rows allowable in a

partition, the right—hand side matrix can be partitioned column—wise also .

This case vii], not be considered here.

IX. 2 Cctnpari son of Computer Resource Requirements

Table 3 shows a comparison between the various solution a],gorit hm/

data handling combinations and their core and I/O requirements. A banded

matrix is assumed. In interpret ing the given data, however, one must

realize that a veil written sparse scheme will essentially provide the

same results , with the active band width taking the place of the maxi-

mum band width. Each method is designated with the letter identifier

used in the last section (lB U, CR, GG, SG). In addition, the letter

T will denote the triangularization (Gaussian El 1inlnation) scheme and

the letter F the factorization (Cholesky, Crout , etc.).

In the banded , row oriented solution schemes, it is assumed that

the right—hand side(s) are stored with the corresponding rows • In the

hypermatrix scheme the right—hand sides are stored in separate blocks.

The following notation i employed: 
. I

r — No. of rows in a block , or submatrix size.

-22-
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$ — No. of non—zero submatrices in a hyperrow b/r

C — Total no. of partitions ti l t .

Data Handling Me thod Core Requiremen t Number of I/O Calls Record Size

IB—T -

lB—F Ub 0

RR—T 2b 4bU b

RR—F 2b 5bU b

CR—T b(r+1) 4sU br

Ga-P b( r+1) 5sU br

GC—T 2br 4sG br

GG —F 2br 5sG br

SG—T 4r 2 + ~2 ~~ . (3g 2 + 13s — 8] r2

SC—F 5r 2 + ~2 
~ t3s 2 + u s  — 63 r2

TABLE 3. Comparison of Core Requirements and I/O
Operations for Data Handling Schemes

IX . 3  Examples

• Figures 2 , 3 and 4 describe program requirements during the

solut ion of a two—d imensional model (E2S2) with two degrees of freedom

per node. In solution schemes based on row and/or column grouping,

blocks of 30 rows each are assumed . Fig . 2 shows core requirements

for the various methods as a funct ion of problem size. The group

sto rage , group reduction scheme, CC , shows an advantage over the

hypermatrix scheme, fo r model s up to N 2 8  (U~16OO) . Figures 3 and 4

show, the number of I/O calls, and demonstrates definite superiority

of CC and SG over the GR and RR schemes. Figure 4 shows a slight

advantage for the SG over the CC method .
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E2S2 f:2 r~30

I
4000 - 

- 7 -  H

SG-T
3500 - -

3000 - -

2500 - GG-F, GG-T -

Figure 2. Core Requirement for a 2—D Model, as a Function of Problem Size
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• Figure 4. comparison of I/O Times (only GO , SG) fo r an E2S 2 Probl,em - -
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Figures 5 , 6 , and 7 show the core and I/O requirements for a two—

dimensional problem with 3200 unknowns and a half bandwidth of 84 as a

L • function of partition size. As seen from figure 4, the hyperinatrix

scheme uses somewhat less core than GO for partition sizes of up to 35

or 40. CC and SG require less I/O than CR throughout, with SC again

• holding a defiaite edge.

• It appears , therefore, from f~gures 2 to 7 that both the GO and SC

schemes are super ior in handling c-f two—d imensional problems.

Moving to shell—type problems (E2S3) , figure 8 illustrates core

requirements as a function of partition size. It is quite appar ent tha t ,

for large bandwidth problems, the hypermatrix scheme requires substantially

less core. From an I/O point of view (fig . 9) ,  GO is again inferior to

SG.

The same conclusions are valid for solids problems , as illustrated

by figures 10 and 11.
-L

X. CHOICE OF OPTIMUM PARTITON SIZES

In solution algorithms involving matrix partitioning in one

• direction (GR—T , CR—F, GG—T, CC—F) or in both directions (SG—T and SC—F) ,

large block sizes result in efficient disk operation at the expense of

core space. The optimum partition size depends on the hardware avail—

able and the charging algorithm utilized by the computer center . In

order to illustrate how one may optimize the size of the partition for a

• particular system, two cases are considered . One case represents a

typical computer center environment where central processor time, I/O

time and core requirements are all taken into account in the charge

algorithm . The other case is that of a mini—computer in which residence

—27—
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Figure 5. Core Requir ement for an E2S2 Model as a Function of Partition Size -
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F igure 6. No. of I/O Calls -for an E2S2 Problem as a Function of Partition Size
(U—3200, b—84) 
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Figure 9. I/O Requirements as.a Function of Partition Size for an E2S3 Model
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time and limited core are the only considerations .

X . 1  Computer Center Environment

A typical charge algorithm in a computer center environment is given

by the following formula**:

— 
C o s t _ B * ( a C + 8~~~+ y S * L)

where,

• 
— R — System cost/hour

C — Central processor time, in hours

P — Peripheral processor (I/O) time in hours . It is defined as
the total time the program occupies an I/O channel, and is

-~~ a function of both the number of disk accesses and amount of
words transferred .

S Core storage, in words

L — Larger of C and P.

— Typical values for the constants are

R — $500

— 0 . 6

— ~~~ — 0.15

y — 1 . 6 3  x 10~~~~.

Furthermore , P is computed from

—

where

W the number of words transferred ,

and

A number of accesses .

**Based on the University of Arizona Computer Center ’s CDC 6400
system

a-
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For the installa tion under consideration , the constants are given by

p 1 .11 x 10 hours/word
V

— 1.04 x iø 6 hours/access.

Assuming the program has a computational efficiency of E , the central

proce ssor t ime is given by:

c — 
Q0(t: tA) 

— 
(t: tA) (2. + 4bp) .

[ 

. The perip heral processor (I/O) time for the various methods is given by

Table 3. M can be put in the form

N Ms +M~ + MD

where

N 5 
is system memory requirement

is the user program requirement , excluding data ,

and

MD is the data requirement , given in Table 3 for the different
schemes .

Case Study 1

Let us examine an E2-S3 model with

N — 20
a

and

f — 6

- U — 4f N (N— 1) — 9120

and

b — 8 f ( N —1)  — 912. 
j

Let us assume 5 loading cases. Furthermore, for a CDC 6400 ,

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ;:~~~~~~~~~: 
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—7t — 57 x 10 sec.m
—7— 11 x 10 sec .

We assum e tha t , for a typical program ,

E — 0.8c

also

— 5000 words

M~, — 12000 words.

Figure 12 shows the computed cost for the given problem, on the

chosen installation using both the CC and SC schemes. It is interesting

to note the sharp minimum exhibited by the CC method at about r — 35 to

-~~ 40 , due to the central processor time becoming predominant , coupled with

the high core requirements. One notes further that the required core

reaches 64K at r — 26 and 131K for r — 62. On the other hand , the

hypermatrix scheme (SC) exhibits a flat minimum extending from r — 20

to r — 40.  The minimum cost for the SC is approximate-

ly $5 ,500 , compared to $10 ,300 for GG. These facts show not only the

clear super iority of the hypermatrix scheme for complex shell problems,

but , assuming the charge algorithm is reasonable also the unsuitability

of the comput~~ installation for handling problems of this type and

magnitude .

XI • MINI-COMPUTER ENVIRONMENT

In a mini—computer environment , the cost is a function of the

residence time rather than system t ime. A typical cost formula ** will

**Baged on a PDP— 15 computer , 32K of core , 18 bit words .

•
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Figure 12. Effect of Partition Size on Solution Costs for 
—

~~d the Hypermatrix Sch~~~ (SC)
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be of the form:

Co st_ R *(C+BP) .

Typical values are

a — $15.00/hour

and

5 — 8.333 E—6 hours/call

t C
~~~~

__

E 
(~ + 4bp)

where , for a mini—computer without floating point processor

tA 5.556 x io
_8 

hours

and

t — 5.833 x io
.8 hours.

m

With a floating point processor,

t — 4.167E—9m

t
A 

— 2.778E—9

P — No. of I/O calls

The number of rows per group is not determined by the charge algorithm,

but rather by the availability of core. Assuming a core of 32K 18 bit

words , and assuming that the system occupies 6K words , and the program

5K, thea a total of 21K is available for data . Assuming extended accuracy

(3 18 bit words per floating point number) then , for GC,

21000 — 2br x 3 6br . 

~~~~~~~~~~~~~~~~~~~~~
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XI.1 Case studies

The mini—computer cost algorithm is applied to the same complex

shell problem used previously, with 9120 degrees of freedom and a half

bandwidth of 912 , (see figures 13 and 14) . Since the amount of core

available is limited to 32K of 18 bit words , the curves are discontinued

when this limit is reached. It is obvious tha t the cost is reasonable

if a floating poin t processor is available —— $600 for SC and $1100 for

CR. The running times , however , are 40 and 70 hours , respectively! It

F - would appear that improvemen t of mini—computer speeds is required before

t problems of this magnitude can be tackled in one computation .

XII. CONCLUSION

The paper establishes a systematic approach to the comparison of --

basic solution techniques and data handling strategies. New parameters

are introduced , which may be used to descr ibe sparsely populated matr ices,

and estimate times and costs of solving the equations , in advance of the

computation . It is demonstated how one can optimize run costs for a

particular solution algorithm, a particular problem and a particular

installation. From the results it appears that both a partitioned banded

approach and the hypermatrix scheme are suitable for the solution of medium

size problems with a narrow active bandwidth . For large shell and solids —

problems , the hypermatrix scheme seems to be more efficient . Mini—computers

compare favorably with large systems in runnin g costs , but may require un-

acceptable running t imes for large problems . 
—
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Figure 13. Cost of Run for a Complex Shell Problem (U—9l20 , b—9 12)
— On a Mini-Computer Without a Floating Point Processor
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